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Abstract Noise emanating from human activity has

become a common addition to natural soundscapes and has

the potential to harm wildlife and erode human enjoyment of

nature. In particular, motor vehicles traveling along roads

and trails produce high levels of both chronic and intermit-

tent noise, eliciting varied responses from a wide range of

animal species. Anthropogenic noise is especially conspic-

uous in natural areas where ambient background sound

levels are low. In this article, we present an acoustic method

to detect and analyze motor vehicle noise. Our approach uses

inexpensive consumer products to record sound, sound

analysis software to automatically detect sound events

within continuous recordings and measure their acoustic

properties, and statistical classification methods to catego-

rize sound events. We describe an application of this

approach to detect motor vehicle noise on paved, gravel, and

natural-surface roads, and off-road vehicle trails in 36 sites

distributed throughout a national forest in the Sierra Nevada,

CA, USA. These low-cost, unobtrusive methods can be used

by scientists and managers to detect anthropogenic noise

events for many potential applications, including ecological

research, transportation and recreation planning, and natural

resource management.
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Introduction

Noise emanating from human activity has become a per-

vasive addition to natural soundscapes across the globe

(Barber and others 2010). Noise is a rising threat to remote

areas due to growth in air travel, motorized recreation, and

exurban sprawl (Miller 2008). Anthropogenic sounds can

spread from their sources in distances and directions (e.g.,

upslope) that many other human impacts cannot. Managing

and protecting soundscapes in natural areas is an especially

important issue for land and natural resource managers

because of the potential impacts on wildlife and visitor

experiences.

Modeling and monitoring studies have found that noise

from motor vehicles can be detected across large spatial

extents, demonstrating that roads are a major source of

anthropogenic noise (Barber and others 2011). For exam-

ple, 83 % of the land area of the continental United States

is within 1,061 m of a road (Riitters and Wickham 2003).

At this distance, noise from the average automobile can

substantially exceed the natural sound level in many

environments (Reijnen and others 1995).

Public and protected areas are not immune to the

increase in noise. The U.S. Forest Service manages
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380,000 miles of roads. Recreational use of the U.S. Forest

Service roads has grown ten-fold since the 1950s, to an

average of 1.7 million vehicles each day (Coghlan and

Sowa 1998). Many locations within the U.S. National

Parks have degraded soundscapes because of high traffic on

nearby roads (Lynch and others 2011). Noise impairs nat-

ural soundscapes, resources that are highly valued by park

visitors: 72 % of Americans surveyed in 1998 believed that

providing opportunities to experience natural quiet and the

sounds of nature was a very important reason for having

parks and preserves (Haas and Wakefield 1998). Research

has documented physiological and psychological impacts

of traffic noise on humans (Haralabidis and others 2008) as

well as the benefits to human health associated with quiet

or unimpaired soundscapes (Berglund and Lindvall 1995;

Stansfeld and Matheson 2003).

Many wildlife species are negatively affected by noise

associated with roads. Anthropogenic noise has been linked

to a suite of physiological and behavioral responses for a

variety of vertebrate taxa (Weisenberger and others 1996;

Slabbekoorn and Peet 2003; Bee and Swanson 2007;

Slabbekoorn and Ripmeester 2008; Barber and others

2010). It has been suggested that traffic noise in particular

can disrupt or alter communication (Patricelli and Blickley

2006; Warren and others 2006; Parris and Schneider 2009);

modify pairing and reproduction (Halfwerk and others

2011; Blickley and others 2012); increase stress responses

(Creel and others 2002); and change density and occupancy

patterns of species (Reijnen and others 1996; Bayne and

others 2008; Francis and others 2009).

Identifying the sources of anthropogenic noise and

measuring the duration and frequency of sound events are

vital steps for understanding and managing the impacts of

noise on wildlife and people. As storage capacity and

battery life increase, inexpensive consumer digital audio

recorders provide an increasingly efficient and accurate

means to monitor soundscapes (Mennitt and Fristrup

2012). Digital audio recorders have revealed important

information about animal acoustic signals and behaviors

across variable spatial and temporal scales (Blumstein and

others 2011) and have played central roles in extensive

spatial surveys for rare or endangered species (Thompson

and others 2010; Fristrup and Clark 2009). Field recordings

can also obtain acoustic properties of anthropogenic noise

while measuring effects on wildlife (Brown and others

2012). This study demonstrates the effectiveness of

acoustic monitoring for documenting road traffic on land-

scape and regional scales.

Our approach applies consumer recorders to collect

data, sound analysis software to automatically detect

sound events within continuous recordings and measure

their acoustic properties, and statistical classification

methods to categorize sound events. We describe an

application of this approach to detect motor vehicle noise

on paved, gravel, and natural-surface roads and off-road

vehicle trails in 36 sites distributed throughout a national

forest in the Sierra Nevada, California, USA. These low-

cost, automated methods can be used by scientists and

managers to detect anthropogenic noise events for many

potential applications, including ecological research,

transportation and recreation planning, and natural

resource management.

Methods

Field Data Collection

The detection and analysis methods we describe were

developed to examine the relationships among motor

vehicle activity, sound propagation patterns, and wildlife

species distributions in Sierra National Forest, California

(Reed and Dietz, unpublished data). We monitored 36

study sites over 2 years (2008–2009). The sites were

located along paved, gravel, and natural-surface roads and

off-road vehicle trails. The site locations were restricted to

a single vegetation community (Sierran mixed conifer)

within a fixed elevation range (1,300–2,600 m). Sierran

mixed conifer forests are a heterogeneous mosaic of closed

canopy forest, shrub patches, and open gaps, and they

provide the primary habitat for more vertebrate species

than any other Sierra forest type (North and others 2002).

The monitoring sites had a mean canopy closure of 57 %

(±23 %) and a mean basal area of 50 m2 ha-1

(±11 m2 ha-1). The understory was relatively dense, such

that the target motor vehicle route was visible at a distance

of 25 m for a mean of 44 % of the field of view in one-third

of the monitoring sites; no portion of the target motor

vehicle route was visible in the remaining two-thirds of the

sites. Monitoring surveys were limited to the summer dry

season (June–August).

At each monitoring site, we established one sound

recorder at 25 m from the target motor vehicle route to

record sound propagated in the immediate vicinity of the

road or trail. Sound recorders consisted of an MP3 recorder

(iAudio 7, Cowon Systems, Inc., Seoul, Korea), powered

by a 12 V, 10,000 mAh battery pack (Tenergy Corpora-

tion, Fremont, California), and a pair of stereo microphones

(Super High Gain Micro Audio System, Supercircuits, Inc.,

Austin, Texas). MP3 recorders were set to line-in recording

mode with a volume of 4 and audio quality of 64 kbps. We

mounted the two microphones in trees, both oriented

toward the target route, a mean of 0.8 m (±0.4 m) apart at

a mean height of 1.4 m (±0.2 m) above the ground. Sound

recorders were set to record continuously for a period of

10–14 days.
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Detection of Sound Events

Stationary sound recorders produced sequential stereo

Windows Media Audio (WMA) files that were 9.3 h in

length. To facilitate storage and analysis of the data, we

split the WMA files into 2-h increments (AsfBin 1.7.14,

Radioactive Software, Dublin, Ireland) and converted them

to waveform (WAV) format (SWITCH audio converter,

NCH Software, Canberra, Australia). We used RAVEN

PRO 1.4 (Cornell University, Ithaca, New York) to pro-

duce spectrograms, detect sound events, and quantify

acoustic measurements from the WAV files.

Automated or computer-aided, detection methods are an

alternative to browsing aurally or visually through long

recordings to find specific sounds. Instead, a detection

algorithm is applied to distinguish signals of interest from

background sound. To detect motor vehicle sound events, we

used RAVEN’s band-limited energy detector, also known as

a time–frequency energy detector (TFED). TFEDs identify

user-defined signal characteristics associated with a partic-

ular sound event (e.g., a vehicle driving by or the call of a

bird) within a continuous recording. Specifically, the TFED

searches for sections of a recording that surpass a user-

specified signal-to-noise ratio (SNR) threshold within a

chosen frequency band and time interval.

To specify acoustic and temporal parameters for the

TFED, we started with 2-h samples of motor vehicle traffic

on each of three primary road and trail surfaces: paved,

gravel, and natural-surface. We listened to the recordings

and searched visually in their spectrograms for all motor

vehicle noise events associated with each road type. Once a

vehicle detection was verified, a selection was highlighted

and saved. We recorded the following measurements for

each selection: minimum and maximum frequency, mini-

mum and maximum duration, minimum separation, block

size, hop size, noise percentile, occupancy, and the SNR.

Definitions of these parameters can be found in Table 1.

We followed the steps outlined in the RAVEN User’s

Manual (Charif and others 2007) using a trial-and-error

approach to identify parameters to construct a TFED for

vehicle events. To choose the frequency parameters, we

documented the low and high frequencies of each sound

event from the selection table. We recorded the lengths of

time in seconds for short- (\1 s) and longer-duration

events (\40 s) to choose values for the minimum and

maximum duration parameters. For the minimum separa-

tion parameter, we found the closest distinct vehicle events

and drew a selection between them and calculated a delta

time measurement from the selection table. Next, we chose

a block size that was three times longer than the maximum

duration because the data being used for noise estimation

should encompass both background noise and signal. The

hop size parameter value should fall between the maximum

duration and noise block size. For an appropriate value for

the noise percentile parameter, we chose both high and low

values. We accepted the default noise occupancy value

provided by RAVEN. For the SNR, we measured the

average power of our selections and the average power of a

typical block of ambient sound without motor vehicle

noise. The difference in average power was noted in

decibels as the SNR ratio.

We manually specified the window type and size in

RAVEN’s Configure Spectrogram dialog to increase the

accuracy of our detector. We chose a Hamming window

function with a window size of 128 samples averaging

between 500 and 1000 spectra. Because time resolution

was not crucial for these long events, extensive averaging

smoothed out the eccentricities of each vehicle while pre-

serving the generic characteristics of most vehicles. We

then tested several combinations of road type, TFED

parameters, and average spectra to determine the best

combination of values for our TFED (Table 2). We quan-

tified the detector accuracy by recording the actual number

of vehicle events from a known sample. The SNR, hop

size, and minimum separation parameters needed the most

adjustment before finding the best combination. Depending

on road type, there were slight differences in the minimum

separation parameter (e.g., ORV = 5 s, Gravel and

Paved = 7.5 s). Besides this parameter, we found no

differences between road type detectors. We tested the

accuracy of the shorter minimum separation parameter on

the gravel and paved road detectors and observed no

change in the number of detections. Therefore, we used the

ORV detector for all road surface types (Table 2).

For each 2-h sound file, RAVEN produced a list of detec-

tions that met the specified criteria. Detection is the process of

finding particular sounds of interest within recordings (Charif

and others 2007). Each detection was visually highlighted on

the spectrogram (Fig. 1) and listed within a selection table,

matching the list of selections identified by an auditory and

visual search. The TFED produced detections of many

anthropogenic and natural sound events, including the target

motor vehicle sound events, as well as wind, thunder, aircraft,

insects, and animal vocalizations. We applied the TFED

analysis to both channels of the stereo recordings, and we

eliminated duplicate detections (i.e., detections with over-

lapping durations) from the resulting dataset.

Classification Model

We used a statistical classification approach to distinguish

the motor vehicle events from other types of detections

(Cutler and others 2007). To build our classification model,

we first created a dataset of known sound events. Our goal

was to represent the full range of variability in the char-

acteristics of both true and false positive motor vehicle
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detections. We selected 13 sites from across the Sierra

National Forest study area to represent a range of road

surfaces (paved, gravel, and natural) and motor vehicle

types (automobile, truck, motorcycle, and all-terrain vehi-

cle). We excluded the first 15 min of recording at each site

to avoid including detections of sounds produced by the

field technicians installing the acoustic monitoring equip-

ment. We then selected the first 100 or all unique detec-

tions, if fewer than 100, recorded at each of the 13 sites.

Because the sites were established at different times of day

and on different days of the week, and because the sites had

highly variable detection rates over time, the selected

detections were well distributed during both day and

nighttime hours throughout the study period. This selection

process yielded a dataset of 1,281 known detections, or a

mean of 98.5 (±5.3) detections per site.

A trained technician listened to all of the selected

detections using RAVEN and Shure SRH840 headphones

(Shure Incorporated, Niles, IL) and coded each as a true

(1) or false (0) motor vehicle detection. Overall, the clas-

sification model dataset comprised 32.9 % motor vehicle

events and 67.1 % false detections. False detections typi-

cally consisted of wind, animal/insect vocalizations, and

aircraft noise. We saw no evidence of false detections

masking true detections during the coding process.

We used RAVEN to extract several acoustic and tem-

poral measurements from the selected detections that were

likely to be useful for distinguishing the motor vehicle

events from other sound events (Table 1). These included

the duration, center, first and third quartile times; peak,

center, first and third quartile frequencies; average and

aggregate measures of entropy; average and maximum

powers; and occupancy of each sound event. We calculated

the acoustic measurements based on RAVEN’s default

spectrogram parameters within the frequency range of the

TFED (1–2 kHz).

We randomly selected 20 % (n = 256) of the known

detections to reserve as a validation dataset. We used the

remaining 80 % (n = 1,025) of the known detections and

the 13 predictor variables to build a classification model

using the Random Forests (RF) package of R statistical

software (Breiman 2001). Based on a preliminary explo-

ration of the data, we used the default number of variables

available for splitting at each node (mtry = 3) and the

default number of trees (ntree = 500) to build the model in

RF.

We applied the RF classification model to detections in

the validation dataset, and we calculated three measures of

the accuracy of our classification model for both the model

and validation datasets: the percentage of detections clas-

sified correctly (PCC), the percentage of motor vehicle

events classified correctly (sensitivity), and the percentage

of non-motor vehicle events classified correctly (specific-

ity). We also calculated the importance of individual

Table 1 Descriptions of temporal and acoustic measurements used by TFED to distinguish motor vehicle events from other sound events

Variable Description

Agg entropy The total amount of disorder in sound over the entire detection

Avg entropy The amount of disorder in sound averaged for each time–frequency frame in the detection

Avg power Value of the spectrogram’s power spectral density averaged over the detection (dB)

Block size Duration of noise block used to calculate the background noise

Center time Duration of time between the beginning of the detection and the median cumulative acoustic energy (s)

Center freq Frequency that divides the detection at the median of cumulative acoustic energy (Hz)

Duration Total duration of the detection (s)

Hop size The parameter that determines how much smoothing is performed in the noise estimation computation

Max power Maximum power within the detection (dB)

Min/Max duration The minimum and maximum duration (s) of a selection

Min/Max freq The minimum and maximum frequencies of a selection

Min Separation The amount of time between selection(s)

Noise Percentile The percentage of the ranked noise that is counted as background noise

Peak freq Frequency at which maximum power occurs within the detection (Hz)

Occupancy Proportion of samples within a selection where a signal exceeds the background noise by the (SNR)

Q1 Freq Frequency that divides the detection at the first quartile (25 %) of cumulative acoustic energy (Hz)

Q3 Freq Frequency that divides the detection at the third quartile (75 %) of cumulative acoustic energy (Hz)

Q1 Time Time duration between the beginning of detection and first quartile (25 %) of acoustic energy(s)

Q3 Time Time duration between the beginning of detection and third quartile (75 %) of acoustic energy(s)

SNR The level above background noise that the sample must exceed
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variables to the classification as the permutation-based

mean decrease in accuracy.

Results

During the 2008 and 2009 summer field seasons, we

recorded a total of 866.4 days (20,798 h) of sound. We

recorded a mean of 12.0 days (289 h) per year at each of

the 36 monitoring sites, and a mean of 7.0 days (169 h) per

year on each acoustic monitor within the sites. Across all

the 13 sites selected to create the model and validation

datasets, the recordings yielded a mean of 5.9 detections

per hour, 1.9 detections per hour (32.9 %) of which were

motor vehicle events.

We found a high degree of classification accuracy

([94 %) for true and false positive motor vehicle detec-

tions for both the model and validation datasets (Table 3).

Variables related to the intensity (i.e., power), entropy (i.e.,

disorder), and duration of the noise events were more

important than frequency characteristics for discriminating

motor vehicles from other types of detections (Fig. 2).

Motor vehicle noise events were characterized by a

relatively long duration (18.7 ± 6.9 s) and high peak

(96.1 ± 6.3 dB) and average power (78.1 ± 5.8 dB) at

relatively low frequencies (IQR: 1,183–1,411 Hz). It is

Table 2 Parameter settings associated with the TFED

Road

type

Min

freq

Max

freq

Min

dur

Max

dur

Min

sep

Block Hop Percentile Occupancy SNR Spectogram configuration

Default Hann, 256 samples, avg 1 spectra

Gravel 1,000 2,000 10 40 5 20 10 20 60 2 Hamming, 128 samples, avg, 1,000 spectra

1,000 4,500 10 40 5 20 10 20 60 2 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 5 20 10 20 60 4 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 5 20 10 20 60 6 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 5 20 10 20 60 5 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 10 20 10 20 60 5 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 7.5 20 10 20 60 5 Hamming, 128 samples, avg 1,000 spectra

ORV 1,000 2,000 10 40 5 20 10 20 60 5 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 5 20 10 20 60 5 Hamming, 128 samples, avg 500 spectra

1,000 2,000 10 40 5 20 10 20 60 2 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 7.5 20 10 20 60 7 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 7.5 20 10 20 60 10 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 5 20 10 20 60 3.5 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 10 20 10 20 60 4 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 10 80 60 20 60 4 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 10 40 20 20 60 4 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 10 20 10 20 60 5 Hamming, 128 samples, avg 1,500 spectra

1,000 4,500 10 40 10 20 10 20 60 5 Hamming, 128 samples, avg 1,500 spectra

1,000 2,000 10 40 5 20 10 20 60 5 Hamming, 128 samples, avg 500 spectra
a 1,000 2,000 10 40 5 20 10 20 60 5 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 5 20 10 20 60 3.5 Hamming, 128 samples, avg 500 spectra

1,000 2,000 10 40 5 20 10 20 70 5 Hamming, 128 samples, avg 500 spectra

1,000 2,000 10 40 5 20 10 20 50 5 Hamming, 128 samples, avg 500 spectra

1,000 2,000 10 40 5 60 40 20 60 5 Hamming, 128 samples, avg 500 spectra

1,000 2,000 10 40 5 10 5 20 60 5 Hamming, 128 samples, avg 500 spectra

Paved 1,000 2,000 10 40 10 20 10 20 60 4.5 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 20 5 20 10 20 60 5 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 5 20 10 20 60 5 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 7.5 20 10 20 60 5 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 7.5 20 10 20 60 4 Hamming, 128 samples, avg 1,000 spectra

1,000 2,000 10 40 7.5 20 10 20 60 5.5 Hamming, 128 samples, avg 1,000 spectra

Rows which are in bold designate the best combination of parameters for road type
a Designates the top combination of parameters used for all road types
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important to note that these measurements were recorded

for the frequency range of the TFED (1–2 kHz), although

we also found them to be relatively consistent with

measurements made over a broader frequency range

(0.5–4 kHz). The true positive motor vehicle detections

were distinguished from false positive detections, which

had a shorter duration (8.5 ± 5.7 s) and lower peak

(77.5 ± 9.0 dB) and average power (59.3 ± 6.8 dB)

measurements (Table 4).

Discussion

This approach is ideal for monitoring acoustic events in

remote locations that require extended or continuous

recording to capture a sufficient sample of intermittent

sounds. Logistically, our compact recording units can be

easily transported across areas that are remote or difficult to

access. Battery life allows units to continuously record for

10–14 days in the field without maintenance, requiring

little effort of researchers and introducing minimal distur-

bance to the subjects of the study. The relatively low cost

of a unit (*$350 USD) enables broad coverage across

numerous sites.

The detection process allowed us to search and select for

motor vehicle noise within a very large dataset (more

than 2 years’ time of continuous recordings). The TFED

algorithm generated several false detections, but a sub-

sequent random forest classification process accurately

sorted vehicle events from false detections. At the onset of

our analysis, we expected to develop one detector for each

vehicle type and each associated road type. However, our

approach yielded one detector that could be used for all

motor vehicles and sampled road types. The ease and

success of classification of candidate detections suggests

that the most efficient approach for similar datasets is to

first minimize the false negatives in the detector algorithm

and then to remove false positives via a classification

model.

Our TFED parameters (Table 2) were customized for

the environmental conditions and vehicle mix of our study

area. Background sound levels in all environments can vary

quite widely. Many environmental factors, including ele-

vation, temperature and wind gradients, and vegetation

structure, influence patterns of sound propagation (Reed

and others 2012), and future researchers will likely need to

customize TFED parameters for application in other loca-

tions. Researchers should consider the tradeoffs between

the time required for customization of the TFED parame-

ters and the highly efficient runtime for analysis. We

acknowledge that other applications may require some

experimentation to select spectrogram and TFED parame-

ters that exploit consistent features of the signals of interest

while suppressing irrelevant variation. It is also important

Fig. 1 Motor vehicle detections along a paved road generated by a

TFED (RAVEN 1.4). The spectrogram consists of a series of spectra

of successive records plotted in a parallel shape with the y-axis

representing frequency in kilohertz (KHz), whereas the x-axis

represents time in minutes and seconds (m:s). Amplitude at each

frequency is represented by color. Here, warmer colors characterize

greater amplitudes
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to note that selection of a representative set of sound events

for the detection and classification process is of equal or

greater importance than a highly accurate detector. A

diverse sample of sound events can minimize false nega-

tives in the detector, minimize false positives in the

classification model and reduce TFED parameter custom-

ization time. After model customization (30–40 h), each

9.3-h file required 6.5 min of processing time, and thus

1 week of monitoring (168 h) required 7.9 h of computing

time, with minimal supervision by a technician. This

automated approach is roughly twice as fast as the most

efficient spectrogram review process (E. Lynch, pers.

comm), which requires dedicated effort by a technician.

The TFED algorithm runs more slowly as the frequency of

vehicle events increases, but it remains faster than visual

review and annotation. However, spectrogram review by an

experienced technician will be the most favorable in a

complicated noise environment with overlapping events

from a variety of noise sources.

Table 3 Accuracy of classification model for motor vehicle

detections

Accuracy metric Model data Validation data

(n = 1,025) (n = 256)

PCC 96.5 97.3

Sensitivity 94.6 98.8

Specificity 97.4 96.5

Fig. 2 Variable importance

plots for temporal and acoustic

measurements used to

distinguish motor vehicle events

from other detections in the RF

classification model. Higher

values of mean decrease in

accuracy indicate variables that

are more important to the

classification

Table 4 Mean (±SD) temporal

and acoustic characteristics of

true and false positive motor

vehicle detections

True positive detections False positive detections

(n = 421) (n = 860)

Measurement Mean SD Mean SD

Duration (s) 18.7 6.9 8.5 5.7

Center time (s) 8.5 4.4 4.0 3.3

Q1 time (s) 6.6 4.1 2.2 2.1

Q3 time (s) 10.5 4.9 5.8 4.4

Center frequency (Hz) 1,254.6 77.6 1,350.9 194.1

Peak frequency (Hz) 1,246.0 106.7 1,385.9 310.1

Q1 frequency (Hz) 1,183.0 58.6 1,186.2 153.1

Q3 frequency (Hz) 1,411.3 68.0 1,536.0 217.7

Aggregate entropy 2.3 0.1 2.2 0.2

Average entropy 2.0 0.1 1.9 0.1

Average power (dB) 78.1 5.9 59.3 6.8

Maximum power (dB) 96.1 6.3 77.5 9.0

Occupancy 0.9 0.1 0.9 0.2
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A potential improvement on our approach would be to

use a recorder that produces compressed audio files that

can be processed directly by the sound analysis program.

This would eliminate the need to split and translate the

recorded data into WAV format. The WAV files were

about ten times as large as the WMA files, and so acoustic

data were archived in compressed form, and only converted

to WAV format for processing.

Our approach can be used, at minimum, to unobtrusively

monitor traffic, including information on vehicle types and

speeds. Other techniques for monitoring vehicle traffic

(e.g., active infrared or magnetic sensors) also require

calibration or post-processing of data to minimize false

counts and accurately distinguish vehicle types (Cessford

and others 2002); yet alternative traffic monitoring tech-

nologies which are capable of classifying vehicles by type

range from 1.4 (e.g., inductive loop) to 74.3 times (e.g.,

video image processor) as expensive as the recording units

that we deployed (Mimbela and Klein 2007). Although our

recorders were located close to roads, acoustic monitoring

can plausibly detect vehicles at considerable distances in

all directions and monitor traffic that is not confined to

roads. To maximize detectability, practitioners should

place recording units in close proximity to the sound source

to minimize the effects of atmospheric and environmental

conditions on sound propagation. If a practitioner wants to

measure propagation effects, then positioning recording

units at a range of distances is critical. However, a higher

rate of false detection would be expected at more distant

sites where the level of vehicle noise is closer to back-

ground sound levels.

Our acoustic monitors allow researchers the flexibility to

customize settings to fit research needs and questions.

Adapting our methods for snowmobiles or aircraft, for

example, should be straightforward, as long as noise events

do not generally overlap in time. RAVEN’s detector per-

formed more reliably when the spectrogram parameters

were configured to reduce the time–frequency resolution to

minimize variations among the events of interest while

preserving sufficient temporal resolution to distinguish

between successive events. The same principle would

apply for the development of detectors for animal vocal-

izations. With properly customized parameters, acoustic

recordings can also validate predictions of noise mapping

software, and record acoustic indications of wildlife

responses to noise.

There is an emergent need to develop a standardized

approach to monitor, analyze, document, and share infor-

mation in the fields of bioacoustics and acoustic ecology

(Blumstein and others 2011). Acoustic methods provide

opportunities to monitor human activities and their effects

on ecosystems at broad spatial and temporal time

scales relevant to land use and management decisions.

Accessible, efficient, and affordable, the methods we

demonstrate in this article can be used for a wide variety of

management and research applications, including ecologi-

cal research, transportation and recreation planning, and

natural resource management, as well as the development

of a common framework for collecting and analyzing data

in the emerging field of soundscape ecology.
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